
Kinode: A General-Purpose Sovereign Cloud
Computer

Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

Sybil Technologies AG

Abstract. Kinode is a software platform designed to integrate all facets
of modern crypto application development. Users can run their own ser-
vices at both the interface and backend level. Corporations or other en-
tities can provide services in a permissionless, protocolized manner. This
node-based cloud computing model resolves the impedance mismatch be-
tween onchain protocols and web services. Developers can write apps in
any programming language that compiles to Wasm and easily distribute
them to nodes. The Kinode platform includes several components that
will be described in this whitepaper: a virtual machine, an onchain global
namespace, a utility token for expanding and assigning a value-topology
to that namespace, a PKI (Public-Key Infrastructure), a peer-to-peer
networking protocol, a modular smart contract account system, and fi-
nally a governance apparatus to distribute onchain assets and continue
development of the platform. All of these components work in lockstep
to solve the problems that have heretofore discouraged developers from
embracing peer-to-peer computing.

January 8 2025
Revision 1



Table of Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Kimap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Example Kimap Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 KNS: Kinode Name System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Adding Other Onchain Identity Primitives . . . . . . . . . . . . . . . . . . . . 8

4 Kinode OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 WIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Microkernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Capabilities-Based Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 System Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Example Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Selected Runtime Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8 Runtime Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9 Backwards Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Package Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Package Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Package Manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Default-distro App: App Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Kimap Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1 Top-Level Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Name Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Data Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 Counterfactual Addresses For Kinode Smart Accounts . . . . . . . . . 31
7.6 ERC-6551 Token-Bound Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.8 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 KINO Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Current and Future Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Kinode Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.1 Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 TLZ Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3 Progressive Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4 Default-distro App: Governance Portal . . . . . . . . . . . . . . . . . . . . . . . 39



Kinode: A General-Purpose Sovereign Cloud Computer 3

9.5 Other Duties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10 A Kinode Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11 Appendix: 3 Ways to Use Kinode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1 Overview

Cryptocurrency, specifically smart contract blockchains, triggered a nascent rev-
olution in permissionless protocols: software that allows participation by all, yet
can be shut down by none. But progress towards a fully decentralized, permis-
sionless Internet has stagnated even as specific niches like decentralized finance
flourish. We believe that this progress is constrained less by blockchain speed
and throughput as it is by an underdeveloped offchain computing substrate.

Recall the singular problem blockchains are designed to solve: preventing the
double-spending of a cryptographically-owned asset.1 The mechanism to achieve
this, now well-proven, expanded to turing-complete VMs, and replicated dozens
of times, is simple: signed transactions confirmed by a decentralized validator
set and deposited into an append-only distributed ledger.

But what operations actually benefit from an onchain transaction?
Permissionless finance obviously requires blockchains, at least at the moment

of settlement, as do operations that mutate ownership of an asset. Smart con-
tracts have proven that double-spend prevention can productively be applied
to any digital asset that requires guaranteed global consensus on the order and
provenance of operations.

Which operations do not benefit from such guarantees? For one, any action
that only requires a signature from a single public key and does not need to
be ordered: a signed message from an individual, or an API published by an
entity acting as the single source of truth. Blockchain transactions are similarly
unnecessary for actions undertaken between trusted parties, which, in fact, com-
prise a large portion of online communication. It turns out that the category of
networked operations that do not require global consensus is much larger than
the category of those that do benefit from being transactions.

Some protocols, like many in decentralized finance, function perfectly fine
with no user interaction outside their onchain transaction protocol. The user
interface for such a protocol is merely a wrapper over the smart contract deployed
onchain. There is a vast landscape of possible protocols, however, that do not
fit entirely into the purely-onchain paradigm. Forcing these protocols into this
model has led to countless failures.

Some believe that merely increasing transaction throughput by a few orders
of magnitude (no small task) can resolve the issue by allowing transactions to
be cheaply verified, even when they are not strictly necessary. We do not. There
will always be significant relative costs to placing transactions in a globally-
distributed ledger—not only monetary, but also in terms of latency, data storage,
1 The Bitcoin whitepaper describes using a distributed ledger to prevent double-spend

of Bitcoin, and subsequent cryptocurrency projects generalized this to a blockchain
preventing double-spend of arbitrary digital assets.

https://bitcoin.org/bitcoin.pdf


4 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

and compute overhead. Transactions will always present an impedance mismatch
and be an inferior technical solution for operations that do not require global
consensus. Until we provide a proper platform for such operations, “Web3” will
simply never outcompete “Web2”.

kimap+KINO KinodeOS

Kinode Governance

Fig. 1. Components of Kinode.

The goal of the Kinode Hyperstructure2 is to present a permissionless sub-
strate for computing. Smart contract blockchains provide access to global con-
sensus state for provenance over digital assets, while Kinode does “everything
else”. In this paper, we present an operating system, an onchain global names-
pace, a value assignment and ranking mechanism, and the long-term governance
structure for these components.

2 Kimap

Historically, discoverability of both peers and content has been a major bar-
rier for peer-to-peer developers. Discoverability can present both social barriers
(finding a new user on a game or chat) and technical obstacles (automatically
acquiring networking information for a particular username). Many solutions
have been designed to address this problem, but so far, the “devex” (developer
experience) of deploying centralized services has continued to outcompete the
peer-to-peer discoverability options available. Why is this?

1. Libraries such as libp2p, while effective at their goal of providing peer-to-
peer primitives, do not provide the “batteries included” identity, discoverabil-
ity, and network-effect-potential of more traditional centralized alternatives,
and can also be difficult to approach for new developers.

2. “Pure” peer-to-peer protocols still rely on hardcoded lists to bootstrap new
entrants.

3. Constructs such as distributed hash tables and CRDTs, frequently used in
peer-to-peer protocols, are complex to properly implement.

2 https://jacob.energy/hyperstructures.html

https://jacob.energy/hyperstructures.html


Kinode: A General-Purpose Sovereign Cloud Computer 5

4. In order for a full, up-to-date snapshot of some globally-shared data to be
easy to aquire, it should be stored in a single place.
– For Kinode, that “one place” is on a public blockchain inside a single smart
contract.
– Multiple map contracts across multiple chains can be used to scale hori-
zontally in the future while still providing a consistent interface to the global
state.
– All data necessary to bootstrap peer-to-peer interaction must be available
within this globally-shared map.
– Any “missing piece” required to complete handshakes or source peers will
result in unreliability and re-centralization.

Kimap is an onchain key-value store inspired by dmap3 , a minimalist onchain
path-formatted key-value store. It serves as the base-level shared global state that
all nodes use to share critical signaling data with the entire network. Like dmap,
kimap is organized as a hierarchical path system and has mutable and immutable
keys. Several aspects of the minimal map implementation are customized for the
“namespace” use case.

A brief description:

1. All keys are strings containing exclusively characters 0–9, a–z (lowercase),
- (hyphen).

2. A key may be one of two types, a name-key or a data-key.
3. Every name-key may create sub-entries directly beneath it.
4. Every name-key is an ERC-7214 NFT (non-fungible token), with a connected

token-bound account with a counterfactual address, implemented according
to the ERC-65515 standard.

5. The implementation of a token-bound account may be set when a name–key
is created.

6. If the parent entry of a name-key has a token-bound account implementation
set (a “gene”), then the name-key will automatically inherit this implemen-
tation. 7. Every name-key may inscribe data in data-keys directly beneath
it.

7. Every name-key may inscribe data in data-keys directly beneath it.
8. A data-key may be mutable (a “note”, prepended with ~) or immutable (a

“fact”, prepended with !)

For a complete specification, see Advanced Kimap in Section 7, which goes
into detail regarding token-bound accounts, sub-entry management, the use of
data keys, and protocol extensibility. For a description of the value-assignment
mechanism that overlaps kimap, see Section 8 for the KINO utility token.
3 https://github.com/dapphub/dmap
4 https://eips.ethereum.org/EIPS/eip-721
5 https://ercs.ethereum.org/ERCS/erc-6551

https://github.com/dapphub/dmap
https://eips.ethereum.org/EIPS/eip-721
https://ercs.ethereum.org/ERCS/erc-6551


6 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

2.1 Example Kimap Entries

os
foo

~ip
~ws-port
~net-key

bar
~routers
~net-key

kino
baz

package
~metadata-hash
~metadata-uri

!this-is-permanent
~this-is-mutable

eth
alice

~routers
~net-key

bob
~routers
~net-key

Fig. 2. Example kimap.

Fig. 2 shows an example with three top-level “zones”, eth, kino, and os. Below
those are a number of namespace entries: foo, bar, and baz. The full path for
foo’s ~ip sub-entry would be ~ip.foo.os.

In this paper, we will sometimes use the term “domain” interchangeably with
what we refer to here as a “namespace entry”. This is a useful shorthand, and in
many ways, kimap does mirror the role of DNS in the worldwide web. However,
the domain analogy is inaccurate if applied directly to all namespace entries
because not all namespace entries resolve to a networking protocol target.

E.g., only entries containing ~net-key are used by the KNS (Kinode Name
System) which runs on top of kimap. Entries baz.kino and package.baz.kino
have no data keys to describe their status in the KNS, and so the “domain”
analogy breaks down for them. The design of kimap is generic in the sense
that many protocols are expected to share this global namespace for different
purposes. The specification of KNS itself, as a protocol operating on kimap, is
described in Section 3, as is the specification of the Kinode Package Manager,
Section 5, both of which make an appearance in this example.



Kinode: A General-Purpose Sovereign Cloud Computer 7

Entries kino, baz.kino, and package.baz.kino are all NFTs, and all have
associated token-bound accounts. The owner address of a namespace entry (usu-
ally) has singular control of its token-bound account. However, a given account
implementation may contain arbitrary logic, such as the ability for anyone to
mint a sub-entry, or edit a “note” key underneath. A given namespace entry
may also elect to set its account implementation as a “gene”, meaning that all
subsequently minted sub-entries will automatically use the same account imple-
mentation.

3 KNS: Kinode Name System

Kinode Name System is a protocol built on top of kimap that acts as a PKI
for the network. KNS transforms an entry in the kimap namespace into a node
identity for use in the Kinode network, where a node is an instance of Kinode
OS, able to communicate peer-to-peer with other such nodes. Node identities
are central to the programming model of Kinode OS. Usually manipulated as
strings in a process, a node identity is the first component of an address, which
uniquely identifies a specific process running on that node, part of a package,
published by some node. See Section 4 for definitions and discussion.

3.1 Specification

The definition of a node identity in the KNS protocol is any kimap entry that
has:

1. A ~net-key note AND
2. (a) A ~routers note OR

(b) An ~ip note AND at least one of:
i. ~tcp-port note
ii. ~udp-port note
iii. ~ws-port note
iv. ~wt-port note

A sample of this protocol can be seen in Fig. 2. Two classes of nodes are
defined: direct and indirect. Direct nodes are those that publish an ~ip and one
or more of the port notes. Indirect nodes are those that publish ~routers. The
nature of direct and indirect nodes in networking is described in Section 4.7.

The data stored at ~net-key must be 32 bytes corresponding to an Ed25519
public key. This is a node’s signing key which is used across a variety of domains
to verify ownership, including in the end-to-end encrypted networking protocol
between nodes. The owner of a namespace entry/node identity may rotate this
key at any time by posting a transaction to kimap mutating the data stored at
~net-key.

The bytes at a ~routers entry must parse to an array of 32-byte values. Each
32-byte value should be a keccak256 namehash that resolves to a node identity.



8 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

These strings should be node identities. Each node in the array is treated by
other participants in the networking protocol as a router for the parent entry.
Routers should themselves be direct nodes. If a string in the array is not a valid
node identity, or it is a valid node identity but not a direct one, that router will
not be used by the networking protocol. Further discussion of the networking
protocol specification is presented in the Section 4.7.

The bytes at an ~ip entry must be either 4 or 16 big-endian bytes. A 4-byte
entry represents a 32-bit unsigned integer and is interpreted as an IPv4 address.
A 16-byte entry represents a 128-bit unsigned integer and is interpreted as an
IPv6 address.

Lastly, the bytes at any of the following port entries must be 2 big-endian
bytes corresponding to a 16-bit unsigned integer:

1. ~tcp-port note
2. ~udp-port note
3. ~ws-port note
4. ~wt-port note

These integers are translated to port numbers. In practice, port numbers
used are between 9000 and 65535. Ports between 8000-8999 are usually saved
for HTTP server use.

3.2 Indexing

Events emitted by kimap are used to index map data. Kinode OS provides all
the primitives required to index effectively in a userspace application, and the
default distribution of the OS includes a process that indexes kimap for the
purpose of reporting KNS data to the networking protocol module.

3.3 Adding Other Onchain Identity Primitives

The KNS is not an attempt at replacing or competing with existing onchain
identity primitives such as ENS6 and Lens7. Rather, it is designed to satisfy the
public key infrastructure needs of the Kinode network. It is of paramount impor-
tance that nodes can initiate secure communication with one another without
the use of any data other than what is available publicly onchain. Peer-discovery
middlemen induce centralization and complicate networking protocols.

The structure of kimap means that KNS avoids competition with other iden-
tity primitives by seamlessly integrating them. As of this paper, this has already
been done for ENS protocol. Here is a brief description of the procedure to do
so:

1. Create a contract to allow owners, and only owners, of a given identity
primitive to mint their corresponding name in a kimap namespace controlled
by this contract.

6 https://ens.domains
7 https://lens.xyz

https://ens.domains
https://lens.xyz


Kinode: A General-Purpose Sovereign Cloud Computer 9

2. Mint and transfer the top-level namespace entry corresponding to an outside
identity primitive, lens for example.

3. If necessary, configure LayerZero, or another such cross-chain messaging pro-
tocol, to allow owners of an identity primitive on another chain to verify their
ownership on the chain that kimap is deployed on.

4. The final result is that the owner of, for example, myname.lens can exclu-
sively register myname.lens in kimap, add a ~net-key sub-entry, and use it
as their PKI entry for Kinode.

4 Kinode OS

This section discusses the architecture of Kinode OS. For a more “hands-on”
description of the OS, including detailed programming examples and documen-
tation, go to book.kinode.org.

Kinode OS is a process virtual machine run to operate a “node” on the Kinode
network. At its core, the virtual machine wraps around a Wasm runtime8 that
executes all userspace code. After a node identity is registered onchain in the
KNS, the operator should boot the OS using the private key matching the public
~net-key posted in the kimap during registration. Once this has been done, if
the networking details (routers, IP, etc) are properly read from the kimap and
matched by the runtime, that node is now “online”. Other nodes can interact
with the booted node through the Kinode networking protocol by reading its
KNS node identity and using the data stored there.

The runtime is as simple as possible, with a maximal amount of logic ejected
to userspace. In the future, Kinode will benefit from “client diversity” as does a
traditional blockchain: many implementations of the virtual machine9 will make
the network more resilient to potential bugs and decentralize the development
process, leading to productive ossification of core features, stability, and long-
term strength.

While all packaged into a single executable, the OS can productively be
described in 3 parts: a runtime, a set of runtime modules, and userspace. The
“kernel” frequently referred to in this paper is in fact just a runtime module.

The runtime is a “native” (to whatever architecture it targets, e.g., Unix, a
browser, hardware, . . . ) program that manages node booting (including onchain
registration) and (generally asynchronously or in parallel) executes the runtime
modules. Runtime modules are blocks of code written at the same level of ab-
straction as the runtime itself, but designed to resemble userspace processes.
These modules are registered in the kernel as processes, meaning that they can
8 Wasm is specified at https://webassembly.github.io/spec. Kinode uses Wasm for

processes because it is a highly performant, language independent, portable, and
sandboxable compilation target.

9 The Wasm runtime is by a wide margin the most complex aspect of the OS, and at
least a dozen such runtimes exist today, written in multiple languages. This bodes
well for future Kinode client diversity.

https://book.kinode.org/
https://webassembly.github.io/spec


10 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

be messaged by userspace in the system-wide request-response protocol and se-
cured via capabilities. Finally, userspace is comprised of all non-runtime-module
processes executed virtually by the kernel. Userspace processes are always com-
piled to Wasm and comport to the Wasm Component Model10. Userspace Wasm
code must be compiled against a Wasm Interface Type (WIT) file as used in the
Wasm Component Model which defines the common set of “system calls” and
types afforded to userspace processes by the kernel.

The reference implementation is currently written in Rust, as are all the
runtime modules. It also comes with a number of pre-installed userspace pack-
ages that perform critical tasks. In the future, other entities will likely seek to
distribute their own implementations that may contain different pre-installed
packages or even different runtime modules.

eth : d i s t r o : sys
ht tp_c l i ent : d i s t r o : sys
http_server : d i s t r o : sys
ke rne l : d i s t r o : sys
kv : d i s t r o : sys
net : d i s t r o : sys
s t a t e : d i s t r o : sys
te rmina l : d i s t r o : sys
t imer : d i s t r o : sys
s q l i t e : d i s t r o : sys
v f s : d i s t r o : sys

Fig. 3. The full list of runtime modules in the OS distribution maintained by core
developers as of this writing.

4.1 WIT

Wasm Interface Type11, or WIT, is a language to describe types and function
definitions that can be used in a Wasm component. Kinode OS uses a single
WIT file to define the types shared across all processes and provide a number of
functions. The functions fall into three categories:

1. Self-configuration
2. Capabilities management
3. Message I/O

WIT files are organized into “worlds”. All types and functions provided to
Kinode processes are currently stored in one world labeled lib. In a separate
10 https://component-model.bytecodealliance.org
11 https://component-model.bytecodealliance.org/design/wit.html

https://component-model.bytecodealliance.org
https://component-model.bytecodealliance.org/design/wit.html


Kinode: A General-Purpose Sovereign Cloud Computer 11

world, process, a single function named init is exported, which means that
all Wasm apps that use the process world must implement that function. The
Kinode kernel starts executing a process by calling the process’s init.

WIT Types Discussion of the types presented here will occur throughout the
rest of the OS description. Some types in kinode.wit are omitted for brevity or
because they are discussed later.

// JSON is passed over Wasm boundary as a string.
type json = string;

type node-id = string;

type context = list<u8>;

record process-id {
process-name: string,
package-name: string,
publisher-node: node-id,

}
record address {

node: node-id,
process: process-id,

}
record lazy-load-blob {

mime: option<string>,
bytes: list<u8>,

}

Fig. 4. Basic types in kinode.wit

An address globally identifies a process running on a particular node.
A process-id identifies a particular process by its publisher, package name,

and process name.

WIT Host Functions WIT host functions must be implemented by the kernel.
The Wasm Component model allows these functions to be called by processes.



12 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

// self-configuration
print-to-terminal()
set-on-exit()
get-on-exit()
get-state()
set-state()
clear-state()
spawn()

// capabilities management
save-capabilities()
drop-capabilities()
our-capabilities()

// message I/O
receive()
get-blob()
send-request()
send-requests()
send-response()
send-and-await-response()

Fig. 5. Host functions in kinode.wit

WIT Process Format The process format enforced by kinode.wit is remark-
ably simple: it imports the types and functions defined in the main library world,
and requires processes to implement a single function: init.12

world process {
include lib;
export init: func(our: string);

}

Fig. 6. Process world in kinode.wit

init serves as the entry point for a process. The kernel begins execution of a
process by calling init. When init returns, the process will cease execution.13

12 This does not preclude processes from implementing other functions.
13 All processes are single-threaded. To perform parallel computation, one can spawn

child processes.



Kinode: A General-Purpose Sovereign Cloud Computer 13

4.2 Microkernel

Every aspect of the operating system, including the kernel itself, comports to a
set of messaging rules defined by the microkernel14 which is responsible for five
things:

1. Using a Wasm runtime15 to execute compiled processes that implement the
Kinode WIT standard, where execution includes managing their memory
usage.

2. Implementing the host functions, exposed to all processes, defined in Kinode
WIT standard.

3. Implementing the kernel API that allows processes with kernel-messaging
capabilities to perform aspects of process management.

4. Passing messages between all processes including to/from the kernel itself.
5. Enforcing messaging capabilities.

Messaging capabilities are a subset of the capabilities security model defined
by the OS, issued by the kernel process, kernel:distro:sys. Each process can
mark itself as either public or private at instantiation. Public processes can
be messaged by any other process. Private processes, as enforced by the kernel,
require that the message source holds their messaging capability. See the discus-
sion of capabilities in Section 4.4 for details on their use and how capabilities
apply to processes running a remote node.

As of this writing, the kernel runtime module in our reference implementation
of the OS fits into about 2,500 lines of Rust code.

The kernel is responsible for maintaining backwards compatibility. If a pro-
cess was written for an older version of the kernel (which is determined by the
version number of the WIT file it implements), newer kernels must store that
WIT version and match it to the process. If data structures in the WIT file
change between versions, the kernel is responsible for translating between for-
mats. The current version of the WIT file is 0.8.0 and the kernel maintains
backwards compatibility with processes written for version 0.7.0. When the OS
and WIT file together reach version 1.0, support for 0.x versions will be dropped
and backwards compatibility will be permanently maintained for all subsequent
versions.

4.3 Message Passing

A message between two Kinode processes is either a request or a response. A
message has a single source address and a single target address.
14 A microkernel architecture is ideal for a “Wasm OS” because it allows a max-

imal amount of system logic to live in Wasm itself, allowing system code to
experience all the safety and conveniences afforded to userspace processes. See
https://wiki.osdev.org/Microkernel

15 The reference implementation currently uses Wasmtime.

https://wiki.osdev.org/Microkernel
https://wasmtime.dev


14 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

record request {
inherit: bool,
expects-response: option<u64>,
body: list<u8>,
metadata: option<json>,
capabilities: list<capability>,

}
record response {

inherit: bool,
body: list<u8>,
metadata: option<json>,
capabilities: list<capability>,

}
variant message {

request(request),
response(tuple<response, option<context>>),

}

Fig. 7. Message type in kinode.wit

Messages are produced and consumed by Kinode processes.
If the node identity indicated in the target address matches that of the

local kernel or is simply the string our, the message is routed directly through
the kernel to the target (assuming the source has the capability to message the
target or the target is public). Otherwise, the message is routed through the
networking runtime module, net:distro:sys, to the remote node indicated.

Ordering of messages between a given source and a given target is enforced
by both kernel and networking protocol. Messages are not otherwise ordered,
meaning that if process A sends messages 1, 2, 3 to process B, and process B
sends messages 4, 5, 6 to A, no guarantees are enforced other than that process
B will receive messages 1, 2, 3 in that order and process A will receive 4, 5, 6 in
that order. If process C sends message 7 to A, it may be received before 1, after
3, or somewhere in between.

Message delivery is not guaranteed. If a message targets a local process,
the target may crash or the kernel may suspend execution between message
creation and delivery. Far more treacherous is the delivery of messages to remote
processes. Nodes may go offline, experience network congestion, or otherwise
drop incoming messages.16 To this end, two error modes are baked into Kinode
message passing: offline and timeout.

Requests can be sent at any time, while responses must target a process that
has a matching outstanding request. A request is outstanding if:
16 Computer networking, being a fundamentally physical process, is impossible to ef-

fectively abstract over without failure modes because the physical world imposes
them.



Kinode: A General-Purpose Sovereign Cloud Computer 15

1. It expects a response
2. Its timeout has not expired

Every request that expects a response must set a timeout value, measured in
seconds. The kernel is responsible for returning a timeout error to a request
that expects a response and does not get matched to one within the number of
seconds declared.17

The offline error type is only returned by net:distro:sys. It may be re-
turned if the node that a request targets is definitively unreachable. This may
occur if a direct node’s networking information in KNS is invalid, an indirect
node has no routers, a node refuses all networking protocol connections / does
not comport to protocol, or any other such immediate error. In practice, “offline”
and “timeout” can usually be treated the same way: by a combination of alerting
the program user and retrying the message.

Protocols for retrying a message, particularly to a remote process, are left to
userspace. Different applications are best served by different retry strategies: a
one-off message may be awaited in a blocking fashion, surfacing an error to the
sender’s UI. A message that is part of a large data transfer may not expect a
response at all, instead relying on the final message in the transfer to await a
response. The networking protocol’s role as a general-purpose messaging system
means that it must support all of these use cases and more.

4.4 Capabilities-Based Security

Kinode OS uses capabilities18 to enable sensible security between both userspace
processes and runtime modules. Security between programs is directly related to
the sovereignty goals of the OS: a user must be able to install a program without
needing to evaluate its source code or blindly trust its developer. Wasm programs
are sandboxed, but have access to powerful tools including networking, memory,
CPU, and disk space—not to mention the possible secrets they contain (consider
a wallet program). Not only must these tools be granted to programs on a case-
by-case basis, but without some form of control between sandboxed programs,
the sandbox becomes pointless, as any power or secret knowledge granted to a
given program could be accessed by other programs!
17 Timeouts must be viewed as a lower bound, as in, the kernel will not return a timeout

error for at least X seconds. The upper bound cannot be guaranteed.
18 Capabilities are “unforgeable tokens of authority”, validated by the kernel, that allow

processes to acquire privileges both at the runtime and userspace level. See the paper
“Capability Myths Demolished” for a good introduction to the topic.



16 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

record capability {
issuer: address,
params: json,

}

Fig. 8. Capability type in kinode.wit

Capabilities are signed by the local kernel’s ~net-key to convert them into
unforgeable tokens of authority. Processes don’t need to concern themselves with
verifying signatures. Instead, the kernel filters out local capabilities that are
not properly signed. If a process is in possession of a capability, it may send
it to another process. Remote capabilities—capabilities created by a different
kernel—are not verified. Why not? If an invalid remote capability is created and
passed in a message, the holder will be alerted to its invalid nature if/when the
holder tries to use it.

As elaborated on in Section 5, which describes a package manager for Kin-
ode, software written on Kinode OS will often benefit from declaring a set of
capabilities desired at the time of install. Many of the built-in runtime modules
distributed with the OS, including the kernel itself, have a capabilities protocol.
The kernel’s capabilities protocol is part of the OS specification because it ap-
plies to every process and is the bedrock security model of the OS. It is also very
simple:

1. Upon instantiation, every process is given its own messaging capability.
2. Every process may mark itself as public.
3. A messaging capability is defined as a capability with the issuer field set to

the process in question, and the params field set to the string "messaging"19

4. If a process is public, the kernel will pass any message to it. If not, the
kernel will check that local processes sending requests to this process are in
possession of the messaging capability.

Note that remote processes are not filtered by messaging capabilities. Because
other kernels can spoof such information as process names, it does not make
sense to filter by process name for a remote message. Instead of using messaging
capabilities to filter remote processes, a process instead may decide whether or
not it accepts messages from remote sources in general, and then filter by the
identity of the source node which cannot be spoofed.

19 Quotation marks included here to produce valid JSON, as is best practice for the
params field.



Kinode: A General-Purpose Sovereign Cloud Computer 17

4.5 System Primitives

Kinode OS manages four primitives via runtime modules:

1. Networking: sending encrypted messages between nodes using permanent
cryptographic identities.

2. Data Persistence: writing to disk with the option to use remote backup
systems.

3. Global Consensus State: integrating with blockchains to read data and write
transactions.

4. Web: HTTP client and server.

The commonality between these four items is the requirement for I/O. There-
fore, they cannot be built as userspace Wasm processes. Instead they are written
as runtime modules: chunks of code at the same native level of the runtime and
specially registered as processes in the kernel, which is itself a runtime module.

Networking, data persistence, blockchain access, and HTTP read/write are
all presented to userspace processes as a request-response API between a runtime
module and the process using the primitive. See Fig. 3 for a full list of the
process IDs that present these primitives. The API for a given runtime module
included in the distro package is part of the set of interfaces grouped within the
Kinode OS versioning system. The OS uses a single semantic versioning number
to indicate breaking and non-breaking changes to these APIs, the kernel, the
KNS/kimap onchain protocols, and the networking protocol. This is covered
further in the discussion of backwards compatibility in Section 4.9.

A few not-strictly-necessary but useful I/O primitives are also presented as
APIs via runtime modules. These are: a terminal, a timer, and the advanced
data persistence options of SQlite, a key-value store, and a virtual filesystem.

Kinode OS can expose new primitives at the runtime level via extensions,
covered in Section 4.8.

4.6 Example Process

Now that the OS has been described in the abstract, and before we dive in to
the specific designs of various runtime modules, it may be helpful to provide a
code sample showing what a process actually looks like.



18 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

wit_bindgen::generate!({
path: "wit",
world: "process-v0",

});

struct Component;
export!(Component);

use crate::kinode::process::standard::print_to_terminal;

impl Guest for Component {
fn init(our: String) {

print_to_terminal(0, "hello from a process");
print_to_terminal(

0,
&format!("our process-id: {our}")

);
}

}

Fig. 9. A process implemented in Rust.

By generating bindings from kinode.wit, a process acquires a set of types
and functions from the langauge in which it is written. The types and functions
generated are often cumbersome to use directly due to their basic nature—in
practice nearly all processes will use a library written for their particular lan-
gauge that smooths over the WIT interface and provides helper functions, type
implementations, and so on.20 To generate WIT bindings, it is merely required
to import kinode.wit and use the guest language’s tooling, in the case of this
example wit-bindgen21 for Rust.

4.7 Selected Runtime Modules

This section describes a number of runtime modules of critical importance.

Virtual Filesystem: The operating system ships with vfs:distro:sys, a
module that presents a standard filesystem API accessible to all processes with
the capability to message it. Directories and files created in the VFS are saved
on the host machine’s filesystem. All I/O is mediated by the VFS, allowing
processes to abstract away management of filesystem resources.
20 As of this writing, most processes have been written in Rust and an extensive library

of this description has already been written, available at https://github.com/kinode-
dao/process_lib

21 https://github.com/bytecodealliance/wit-bindgen

https://github.com/kinode-dao/process_lib
https://github.com/kinode-dao/process_lib
https://github.com/bytecodealliance/wit-bindgen


Kinode: A General-Purpose Sovereign Cloud Computer 19

All processes that wish to persist data locally between boots will use ei-
ther the VFS or another runtime module that writes to disk, which may be an
extension or one of the default-distribution’s SQLite or key-value store modules.

Networking: This runtime module is the part of the OS that implements the
Kinode networking protocol. This module is somewhat special: in the kernel,
messages with a target that contains a node identity other than that of the
kernel are all routed to net:distro:sys. Once a message is passed to the net-
working module, it is routed to the target node using the information available
in the Kinode Name System. For this reason, the networking module must be
made aware of the current onchain state of the KNS.

KNS updates are given to net:distro:sys using a request API made avail-
able to processes that have messaging capabilities to it. Note that messaging
capability to net is only required to send configurational messages, and is not
required to simply send networked messages: those are handled through the ker-
nel. Note also that as the KNS state grows, it will become prudent to not load
the entire state into the networking module, but rather to dynamically query the
state as networking information is required for accessing new nodes or updating
stale data from known ones.

The networking protocol itself will not be fully specified here, as it is still
being finalized and is best suited by its own document. However, some key
aspects:

– The protocol uses exclusively information available onchain, including IP
addresses, ports, and router nodes, to facilitate message-passing. See the
description of KNS in Section 3.

– Direct nodes publish their routing information onchain. Indirect nodes pub-
lish a set of routers who facilitate message-passing for them. This is analogous
to STUN+TURN in WebRTC. A router may be able to facilitate a direct
connection for indirect nodes in a STUN-like manner.

– Networking may occur across many underlying transport protocols. The
specification of KNS in the kimap allows for a node identity to publicize
the port to be used for each transport protocol that node supports. The
runtime is responsible for implementing each protocol that a node broad-
casts. In practice, nodes will mostly use TCP for direct communication and
routers will support a variety of protocols used by special-purpose nodes
(such as mobile devices or nodes running in-browser).

– Messages are end-to-end encrypted using a Noise protocol22 where each node
has a static public key in their Ed25519 key published onchain, the cipher
function is ChaChaPoly, and hash function is BLAKE2s. The XX pattern is
used for handshakes.23

– Message-passing in a networked context aims to be as similar as possible to
the local context. However, the offline and timeout error-cases together cover
the inescapable realities of networking.

22 http://www.noiseprotocol.org/noise.html
23 This is described in Noise as “Noise_XX_25519_ChaChaPoly_BLAKE2s”.

http://www.noiseprotocol.org/noise.html


20 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

– There are no ACKs at the Kinode protocol level: if the underlying trans-
port protocol confirms delivery, failure to do so can become an offline error.
Otherwise, the request-response pattern must be used to confirm message
delivery.

HTTP Client & Server: Web access is a critical part of many programs that
run on Kinode. A built-in HTTP client module allows processes to ingest data
from the web. The HTTP server module allows processes to serve data to the
web, either statically by sending a payload to be served for a given path, or dy-
namically by requesting the server module to forward incoming HTTP requests
to the process. Both modules present a request-response API (documented else-
where).

Most programs that present an interface to the node user do so through
a combination of static and dynamic HTTP server path bindings. All paths
bound by a process are prefixed with the process-id, in order to remove the
possibility of collisions or imposter resources. Further, paths may be bound as
“authenticated”, meaning that access will require a JSON Web Token (JWT)
given via password login to the node. Once the token is acquired via login, a
user may access any authenticated path served by processes on the node.

This raises a subtle security issue: if a process serves an API allowing the
user to perform various actions over HTTP (as is quite common), other pro-
cesses running on the same node can easily access the API by serving a frontend
JavaScript file of their own, which can fetch content from any authenticated
path on the node. This circumvents the capability-based security model applied
to inter-process communication and suddenly shifts the trust assumptions for all
software installed on a node that acquires the capability to message the HTTP
modules.

Rather than allow this escalation of trust assumptions, the HTTP server pro-
vides a special mechanism to serve authenticated paths that are only accessible
at a subdomain. The security model of the browser is thus leveraged to generate
a new JWT for the subdomain URL, required for access to the paths at the
subdomain and disallowing client access from the base domain. Users may then
login at the subdomain with the same password as the base node server and
generate a new token in their browser. We call this model “Secure Subdomains”.
Processes that serve sensitive HTTP APIs for user interfaces are encouraged to
use Secure Subdomains to properly sandbox these operations away from other
software running on the user’s node.

ETH RPC: The OS includes an Ethereum (and EVM-compatible chains) in-
dexing runtime module, eth:distro:sys, which provides read and write access
to blockchain data. This module can connect directly to WebSocket RPC end-
points or relay through other Kinode nodes, forming a potential chain of relays.

The module implements standard Ethereum JSON-RPC API methods, sup-
porting operations such as querying block data, retrieving account balances, esti-
mating gas costs, and sending transactions. Processes interact with this module



Kinode: A General-Purpose Sovereign Cloud Computer 21

through a request-response API, typically using a Provider struct that encap-
sulates chain-specific details and request handling.

Optional .eth_providers and .eth_access_settings JSON files in the
node’s home folder may be used to configure the module. The former allows
users to specify their preferred RPC endpoints, relay nodes, and chain-specific
settings, and the latter controls whether other nodes may use this node as a
provider with potential allow/deny lists. The configuration can also be modified
at runtime through the module’s API, enabling flexible provider management.

The module supports both one-time requests and subscriptions, particularly
useful for monitoring real-time events specific log entries or kimap note keys.
Subscriptions are managed through unique identifiers, allowing processes to filter
and unsubscribe from event streams as needed.

eth:distro:sys also integrates with Kinode-specific functionalities, such as
querying the kimap contract, which is central to Kinode’s naming and identity
system. This allows processes to interact with Kinode-specific on-chain data
seamlessly.

let node = namehash("node.foo.os");
let (tba, owner, note) = provider.kimap_get(&node)?;

The module acts as a relay and subscription manager for Ethereum JSON-
RPC requests and responses. Processes may use helper functions and structs to
format requests according to the Ethereum JSON-RPC specification24.

eth:distro:sys handles maintenance of subscriptions, managing provider
connections, and facilitating the routing of Ethereum data between Kinode in-
stances, allowing processes to have direct control over their Ethereum inter-
actions while benefiting from the module’s network management capabilities,
including the ability to relay requests through other nodes when direct RPC
access is unavailable or not yet configured.

This design facilitates the development of decentralized applications that can
efficiently interact with global blockchain networks, even in constrained peer-to-
peer environments. It allows for unique scaling possibilities:

– Applications can default to public endpoints while allowing users to easily
switch to their own nodes.

– Nodes without direct RPC access can relay through peers, distributing net-
work load.

– Multi-chain applications can be built with a unified interface, simplifying
development across different EVM-compatible networks.

By providing this flexible and powerful interface to Ethereum and other EVM
chains, Kinode OS enables developers to create robust blockchain-integrated
applications while giving users control over their blockchain access points.
24 https://ethereum.github.io/execution-apis/api-documentation/

https://ethereum.github.io/execution-apis/api-documentation/


22 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

SQLite, KV-Store: In addition to the VFS, the OS provides SQLite and
key-value store runtime modules. These modules serve as high-performance disk
storage options for processes that require persistence. Each module has a request-
response API (documented elsewhere) exposing their respective operations. Both
SQLite and KV-store structure requests such that processes with the default
messaging capability may create and access only their own tables. Of course,
processes may use other storage options designed in userspace or as runtime
extensions.

4.8 Runtime Extensions

Wasm is an excellent compilation target for processes. Processes are naturally
sandboxed and cross-platform. However, there are also costs associated with
Wasm. For example, not all libraries can be compiled to Wasm and hardware
support for accelerators like GPUs is currently lacking. Extensions supplement
and compliment Kinode processes, removing these constraints, while maintain-
ing the advantages associated with kernel-provided services, e.g., the request/re-
sponse system.

Extensions are simply WebSocket clients, written in any language and run
natively alongside Kinode OS, that connect to a paired process. The paired
process serves as the interface between the extension and the rest of the Kinode
system.

Extensions can be written in any language and can use any library, since an
extension is just a native program that can connect to Kinode as a WebSocket
client and that implements a certain protocol.

The cost of extensions is that they are not as easy for users to install and use.
Since they are native, rather than Wasm, they will not run on arbitrary systems.
They are also not as easy to distribute as packages. Therefore only sophisticated
users should be expected to run extensions, since they will either need to compile
them themselves or set up and maintain an additional program running next to
Kinode.

4.9 Backwards Compatibility

Once the OS reaches version 1.0, no backwards-incompatible change will be
allowed in a subsequent version. The surface area presented by the OS for the
purpose of backwards-compatibility is defined as:

– The networking protocol
– The request-response API for each runtime module listed in Figure 3
– kinode.wit and the kernel-level implementation of the host functions
– The on-disk footprint of runtime modules that use disk, along with the en-

crypted keyfile used by the OS to store the networking key and JSON Web
Token used for authenticating of node-served frontends.



Kinode: A General-Purpose Sovereign Cloud Computer 23

A number of userspace packages included in the reference distribution must
also be backwards-compatible in practice due to the inconvenience created by
breaking changes. This includes (but is not limited to) app_store, kns_indexer,
homepage, and terminal.

5 Package Manager

Like KNS, the Kinode Package Manager is a protocol deployed on kimap. It is
another protocol critical to the operation of Kinode OS. As described in Sec-
tion 4, the userspace presented by the OS is comprised of processes, which are
bundled into packages. There is no kernel-level method for managing the pack-
ages installed in a node. Rather, userspace programs with the required capabili-
ties must save packages in the virtual filesystem and prompt the kernel to start
running certain processes.

If a process has the necessary capabilities, they may create requests to and
receive responses from kernel:distro:sys like any other process. The kernel
specifies a request type that includes commands relevant to managing processes.
Programs that wish to “install” and “uninstall” processes merely submit these
requests. These programs must also have capabilities to access the virtual filesys-
tem, such that they can create new top-level directories formatted in such a way
that the kernel can access compiled .wasm files that contain a single process.

By convention, packages are stored in a .zip file with the full name of the
package <package_name>:<publisher_node_id>, e.g., for a chat app chat pub-
lished by template.os, the full name of the package is chat:template.os. The
top level of the zipped directory contains a pkg directory and optionally a direc-
tory for the source code of each process defined in the pkg directory. The pkg
directory defines processes by:

1. Containing a .wasm file, the name of which matches the process name
2. Optionally declaring the process in a file named manifest.json, which de-

fines the processes in the package that should be run upon installation and
when a node with this package installed is first booted.

pkg may also contain a scripts.json file which defines a list of processes
that can be run as scripts. Scripts are merely processes that, by convention, can
be executed from the system terminal, run for some period of time, and, before
exiting, optionally return a final response, which the terminal may print.

It is important to note that all of the above logic exists outside of the ker-
nel and runtime. A package’s directory, metadata, and manifest are all inter-
preted by userspace code and boiled down to a series of kernel commands includ-
ing InitializeProcess, RunProcess, and KillProcess. Of course, Kinode OS
would not be very useful without this logic, and so the distribution maintained
by core developers comes with a combination app store and package manager
called app_store:sys. Note that the publisher name, sys, is not a node iden-
tity. The publisher value in a package name is not enforced by the kernel. It is
accepted uncritically, and it is again the responsibility of the userspace package
manager to assert a valid publisher if desired.



24 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

5.1 Specification

The userspace app store/package manager maintained by core developers uses
an onchain protocol running on kimap to enable app discoverability and ranking.
The definition of a package (interchangeably called an “app”) in this protocol is
any kimap entry that has both of the following sub-entries:

~metadata-hash, ~metadata-uri.
The publisher name of a package is the parent-parent entry. The package

name is the last path item in the parent entry.
A ~metadata-hash entry must contain 32 big-endian bytes corresponding to

a SHA-256 hash of the metadata.json file used to install a package.
A metadata-uri entry must contain a UTF-8 string: a Uniform Resource

Identifier (URI) indicating where the metadata file can be found (which, when
hashed, matches ~metadata-hash).

os
foo

~ip
~ws-port
~net-key
foos-app

~metadata-hash
~metadata-uri

kino
bar

baz
~metadata-hash
~metadata-uri

bam
~net-key
~routers
~metadata-hash
~metadata-uri
boozle

~metadata-hash
~metadata-uri

Fig. 10. Example kimap with multiple packages present.

In Fig. 10 there are 4 packages present: foos-app:foo.os, baz:bar.kino,
bam:bar.kino, and boozle:bam.bar.kino. Note that the parent path from a
valid package sub-entry contains the entire package name including publisher.
Note also that a publisher does not need to be a valid node identity as defined
in the KNS protocol, though in practice it likely will be. A single publisher
providing multiple packages can do so by minting sub-entries corresponding to



Kinode: A General-Purpose Sovereign Cloud Computer 25

those packages’ names. Lastly, a package may also itself be a node identity as
demonstrated in bam.bar.kino. This is a good example of how protocols in
kimap’s global namespace interact and overlap with one another.

5.2 Package Metadata

The value of a package’s ~metadata-uri must be some kind of resource serving
metadata.json, a file that must hash to ~metadata-hash. If these requirements
are met, a user may use metadata.json to gather information about a package.

{
"name": "template",
"description": "a description of the package",
"image": "a URL to an image file",
"properties": {

"package_name": "template",
"current_version": "0.1.0",
"publisher": "template.os",
"mirrors": [

"mirror-node-1.os",
"mirror-node-2.os",
"https://my-site.com/my-package.zip"

],
"code_hashes": {

"0.1.0": "abc"
}

},
"external_url": "a URL to a project website",
"animation_url": "a URL to an animation file"

}

Fig. 11. A metadata file.

The structure of metadata.json is designed to match that of the ERC-721
metadata spec such that packages can be ERC-721 NFTs.

The mirrors field is an array of strings that should either be KNS node iden-
tities or URIs that resolve to the zipped package. Mirror nodes must configure
themselves to host a package using their App Store program.

Note that the top-level name field and package_name in properties need
not match. The former may be a descritive user-facing name while the latter
must match the actual package name to be used by the OS.

All fields are required but may be left empty other than package_name and
publisher, which are required to have values.



26 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

If current_version, code_hashes, or mirrors are left empty, users will
likely be unable to download the package, because a downloaded package is
verified by hashing the zipped file and comparing it to the desired version’s
entry in code_hashes.

5.3 Package Manifest

In the pkg directory of a package, a developer may write a manifest to program-
matically define how a package should be installed and save it as manifest.json.
If this file is not present, the package will not be installable. The manifest is a
JSON array where each element is a description of a process that must be in-
stantiated upon install and subsequent boots of the node.

[
{

"process_name": "chess",
"process_wasm_path": "/chess.wasm",
"on_exit": "Restart",
"request_networking": true,
"request_capabilities": [

"homepage:homepage:sys",
"http_server:distro:sys",
"net:distro:sys",
"vfs:distro:sys"

],
"grant_capabilities": [

"http_server:distro:sys"
],
"public": true

}
]

Fig. 12. A manifest file.

All fields are required.
A package manifest is interpreted in userspace by a program such as (but not

limited to) the default package manager in order to instantiate any and all pro-
cesses within a package that are intended by the developer to start upon package
install. The manifest contains an array of objects, each of which corresponds to
a process in the package.

process_name sets the name of the process and process_wasm_path allows
the developer to specify the path to the WebAssembly binary file for the process,
relative to the pkg directory.



Kinode: A General-Purpose Sovereign Cloud Computer 27

The on_exit field sets the behavior of the process when it exits. There are
three possible behaviors:

1. "None" - The process is not restarted and nothing happens.
2. "Restart" - The process is restarted immediately.
3. "Requests" - The process is not restarted, and a list of requests set by the

process are fired off. These requests have the source and capabilities of
the exiting process.

Documentation and examples of this behavior, along with some subtleties
regarding process crashes, can be found in the Kinode Book25.

The request_networking, request_capabilities, grant_capabilities,
and public fields control the process’s networking and capabilities, and whether
or not the process should be publicly visible. request_networking and public
are booleans that set, respectively, whether the process may communicate with
other nodes and whether the process may be communicated with by other pro-
cesses whether or not they have a messaging capability object for the process. The
messaging capability object refers to the kernel’s capabilities protocol described
in Section 4.4.

Finally, request_capabilities and grant_capabilities are arrays of ca-
pability objects serialized in JSON that the process being installed expects to
receive and grant. The userspace program that interprets a manifest must itself
own a capability in order to honor the capabilities in the manifest. Manifests
should only request capabilities that are necessary for program execution. In the
case of the package manager, a user will be notified and expected to manually
approve the capabilities given to a newly installed package’s processes. Granted
capabilities are generated from the process being instantiated. The shorthand
version of a kernel-mediated messaging capability is simply the string version
of the process-id for which messaging is being requested or granted, seen in
Fig. 12.

5.4 Default-distro App: App Store

As noted, the current distribution of the OS comes with an app store. This pack-
age is named app_store:sys. The main process, main:app_store:sys, indexes
kimap to identify packages onchain, manages the installation of packages using
kernel commands, and presents a web UI for a node operator to browse, install,
and manage packages (generally labeled as “apps” in the frontend).

The app store also uses KINO to enable ranking and filtering of available
apps. A common failure mode of distributed networks is that content becomes
saturated and global curation is impossible without re-centralization. In the
case of an app store, this manifests as copycat apps, low-effort scams, and a lack
of discoverability for even very popular and widely-installed apps. Registering
KINO (see Section 8.1) with namespace entries that are packages published in
kimap allows users to:
25 https://book.kinode.org

https://book.kinode.org


28 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

1. Only display apps that have a certain amount of value assigned to them,
filtering out discarded tests and spam, and

2. Have a metric to compare apps against one another, allowing one to compare
two similarly-named apps and easily see which is more widely adopted in the
peer-to-peer network.

This basic filter-and-sort mechanism repeats itself across all protocols in kimap.
Since each node in the network can directly index and apply algorithms to the
namespace, different implementations of software can filter-and-sort using dif-
ferent paramters customized to user preference and use-case.

6 Kit

Kit is the CLI (command-line interface) development toolkit for Kinode. It pro-
vides a variety of tools, including but not limited to:
– new: Creates packages from templates
– build: Builds packages by compiling processes within
– start-package: Installs and starts a built package
– boot-fake-node: Runs “fake” temporary development nodes
– boot-real-node: Runs a node with a given “home” directory
– chain: Starts a local chain with kimap contracts for development
– run-tests: Runs user-defined tests on a network of “fake” nodes

Kit aims to provide developers with every tool required to go from idea to
finished project. For example, a developer can use kit new to create a template,
iteratively develop, build, and test using a combination of an IDE, kit build,
kit start-package, and kit boot-fake-node. Finally, use run-tests to en-
sure stability of the project going forward.

Kit’s built-in templates help newcomers to learn by giving them working
examples so they can begin quickly begin experimenting. They also demonstrate
best-practices.

Kit makes use of Kinode’s HTTP server RPC endpoint to interact with
Kinode. As such, kit is restricted to localhost only. However, kit connect allows
remote development as long as developers have ssh access to the remote machine.
kit connect showcases a strategy employed throughout kit: when tools already
exist, make use of them by wrapping them in a very easy-to-use way. Here,
connect uses ssh tunneling to send the kit request securely to the remote
machine. As such, developers can work on remote Kinode’s with the same ease
that kit affords for local development, but security is not compromised for users.

7 Kimap Advanced

As described in Section 2, kimap is an onchain hierarchical key-value store. Keys
in the map come in three varieties: “name”, “note”, and “fact”.

Each name entry is an ERC-721 NFT. The entry NFT is minted with an
ERC-655126 token-bound account. This token-bound account, or TBA, is the
26 https://eips.ethereum.org/EIPS/eip-6551

https://eips.ethereum.org/EIPS/eip-6551


Kinode: A General-Purpose Sovereign Cloud Computer 29

only address which is permitted to create sub-entries beneath the associated
name key.

Note and fact entries within kimap may store data in their memory slot
within the map. Notes are mutable, while facts are immutable once set. They
may not have sub-entries.

Combining these properties allows for the creation of advanced permissioning
systems within kimap, allowing the namespace as a whole to become a tapestry
of sub-namespaces, each with unique properties. For example, the process by
which KNS integrates with existing onchain identity primitives (described in
Section 3.3): an entry is deployed with custom logic (using cross-chain messaging
protocols if necessary) that restricts sub-entry creation to only wallets with the
matching onchain asset for the sub-entry they are posting a transaction to mint.

7.1 Top-Level Zones

In data structure terminology, kimap is a tree, and thus has a “root” node. The
root node is not particularly interesting, and sits immutable, with no custom
logic, upon protocol deployment. And, given that a tree can be recursively de-
fined, any entry deeper in the tree can be arbitrarily treated as a “root” node
for the tree beneath it. This intuition of recursive trees is important for under-
standing both “how” and “why” entries “govern” the entries beneath them using
custom contract logic. Once understood, it’s easy to see how any protocol on top
of kimap can thrive within even a deeply-nested namespace entry and create an
entire namespace of its own within.

However, there’s a gap that must first be crossed: how do entries immediately
beneath the root node come into existence, such that the first layers of custom
logic, and potentially infinite subsequent layers, can be applied?

These entries immediately beneath the root node are called Top-Level Zones
(TLZs). A fair analogy can be made to Top-Level Domains in the Internet’s
Domain Name System. And like DNS TLDs, the creation of new TLZs in kimap
must be permissioned in some way. Uncontrolled proliferation of entries at the
top level would lead to name-squatting, a lack of reasonable schelling points,
and disincentivize the desired composition of rulesets stacked at various levels of
depth within the map: all issues demonstrated by the history of similar names-
paces. Unlike DNS, though, TLZs in kimap must be distributed in a fair manner
and in such a way that overall control of namespace is totally decentralized.
Of course, ownership of a TLZ is also permissionless once acquired, leaving no
central authority in control of namespace operation. The existence of immutable
and relatively ungoverned TLZs also guarantees free expression for protocols
within at least those areas of the namespace.

We have designed a multi-phase process for TLZ distribution, described in
Section 9.2.

A given TLZ can be owned by a contract that implements rent logic, requir-
ing regular payments for control over a sub-entry. Or, an owner contract could
dynamically re-allocate sub-entries as temporary or permanent rewards for auc-
tions, gameplay, or other onchain activities. We anticipate and welcome these



30 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

experimental outcomes. A number of TLZs will be transferred to immutable
contracts at launch to perform various system roles and integrate with exist-
ing onchain identity primitives. The os TLD, for example, will be controlled
by a contract that allows any sub-entry to be minted freely, by anyone, and
owned forever. To prevent name squatting and generally dilute the value of this
“namespace of last resort”, minted sub-entries are required to be 9 or more char-
acters long. This character minimum is an example of custom logic that may be
implemented at the TBA level for a given name entry.

7.2 Name Keys

Name keys determine ownership of entries in the namespace and the ability to
both create sub-entries and inscribe data into data keys. Sub-entries are just
name keys directly beneath the parent name key, so, unless contract logic in a
higher parent entry has disallowed it, the name key hello.os may freely create
sub-entries like sub1.hello.os and sub2.hello.os. Name keys are tokenized
as ERC-721 NFTs and bound to TBAs at counterfactual addresses. The usual
properties of NFTs apply to name keys: they may be transferred, wrapped, and
composed with onchain protocols that operate on ERC-721s.

7.3 Data Keys

Data keys store content in the kimap. There are two flavors: mutable “notes”,
and immutable “facts”.

Entries of this variety may not mint sub-entries, hence the prefix: one can
use ~my-data.hello.os to store data while minting my-data.hello.os in order
to mint sub-entries beneath it, should one desire to do so.

The content of a note or fact is stored as bytes inside the contract map. The
owner of the parent name key is the only address that can set/modify the data
stored at that slot. The interpretation of stored bytes is the responsibility of the
protocol reading and writing from that entry.

All data is public. Protocols that wish to operate on private data may store
hashes at namespace entries, operate offchain within the end-to-end encrypted
Kinode networking protocol, or ideally use a combination of both: kimap for
public signaling and dispersion of schelling points, peer-to-peer messaging for
data exchange.

7.4 Extensibility

Kimap is designed to be extensible. Protocols such as Kinode Name System and
the package manager extend kimap by interpreting the data stored at certain
keys in a particular way. A specific description of how these protocols atop kimap
specify themselves may be seen in Section 3 and Section 5, respectively.

In the general case, a protocol specifies itself on kimap by declaring a set
of data keys that are interpreted a certain way and endow certain properties



Kinode: A General-Purpose Sovereign Cloud Computer 31

to their parent name key. For example, a simple motd (“message of the day”)
protocol might specify that the bytes stored at any ~motd key will be interpreted
as a UTF-8 string message from the parent key, which could be a node identity
in the KNS. If the owner of the key howdy.kino wishes to participate in this
protocol, it simply mints the key (mutably, one would hope) ~motd.howdy.kino
and stores bytes there, perhaps [68 65 6c 6c 6f 20 77 6f 72 6c 64].

Extension of kimap is totally permissionless: any protocol can operate on the
keys and data stored in the map. Note that if two protocols use the same entry or
entries to store data, key owners may be forced to choose between participating
in one protocol or the other. If an entry label is already in use by a popular
protocol, developers creating a new protocol would be advised to either match
the data format in current use for that entry label, or ensure non-overlap by
prefixing/postfixing the entry label with a custom value. For example, if the key
howdy.kino is the entry-of-interest, and the motd protocol described above is in
common use, a different protocol that wishes to use the ~motd entry label could
specify that it instead reads that label from ~my-protocol-motd.howdy.kino.

Another strategy for avoiding conflicts is to subdivide the namespace by
storing a protocol’s data entries at a nested path beneath the relevant entry. A
different protocol that wishes to use the ~motd entry label could specify that
it reads that label from ~motd.my-protocol.howdy.kino rather than directly
below.

7.5 Counterfactual Addresses For Kinode Smart Accounts

A counterfactual address is an smart contract address that may be known before
code is deployed into its storage on the blockchain. Ethereum enables counterfac-
tual address creation with the create2 opcode, which deploys code to an address
deterministically generated given the contract address calling the opcode, the
initialization bytecode for the contract to be created, and a salt. Since each of
these factors is known ahead of time for any given entry, every name key in kimap
has a corresponding counterfactual address for its smart contract account. This
property comes in handy when designing protocols that operate on token-bound
accounts. A developer can instruct a user to create a sub-entry for their node
identity and have already deposited assets in the wallet that will be created as
a result.

7.6 ERC-6551 Token-Bound Accounts

The smart contract accounts that are deployed to these addresses are ERC-6551
compliant token-bound accounts. This enables the ownership of a given node on
the network to be managed according to any logic that operates on ERC-721
tokens. Anything and everything associated with the account can be transferred
to a new owner.

Token-bound accounts are fully programmable “smart accounts”. As a result,
they can implement arbitrary logic to govern the assets within. They can also be
used to control the sub-entries endowed to them by kimap’s logic. By default, the



32 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

token-bound account associated with a name entry will have the sole ability to
create sub-entries beneath. This can be modified to expose a public mint function
with arbitrary requirements, such as a minimum amount of KINO registered to
the sub-entry. Such logic has already been implemented in various top-level zones
to create public namespaces.

When a name entry is created, the minter sets an implementation for the
token-bound account. A name entry in kimap may set its gene to a specific token-
bound account implementation. This enforces that all subsequently created sub-
entries will use the same implementation, overriding the implementation set by
the minter.

7.7 Scaling

The scaling properties of a kimap instance are limited by the blockchain on
which it operates. We do not forsee this being an immediate concern as Ethereum
Layer-2s can handle enough transaction throughput to support basic kimap us-
age for a large number of users. However, a Kinode-centric future will clearly
require vastly more scale in terms of kimap operations per second–more than
any single blockchain can support today. The scaling solution must therefore be
horizontal: a network of independent kimap instances, each capable of handling
a portion of the total state of the namespace. Thankfully this strategy dove-
tails with the single-chain kimap implementation. The kimap contract declares
a single root node (see Section 7.1). The first instance of kimap simply declares
the root node to be 0x0. Subsequent deployments may scale horizontally across
multiple blockchains by deploying with a root node set to an existing names-
pace entry within the “main” instance (or even a separate instance, in a nesting
pattern).

A subsequent deployment, therefore, has a “pointer” within the primary
namespace and all entries are nested under the entry in the primary names-
pace. The “pointer” entry will likely post immutable facts such as !chain-id
and !address to direct to the subsequent deployment. This strategy will allow
the namespace to easily scale across a variety of Ethereum layer-2 blockchains,
and possibly other EVM-compliant blockchains. Note that while the namespace
information will work straightforwardly across deployments, the smart account
functionality will require more implementation work to work across chain bound-
aries if at all. Smart account module inheritance may be limited to a single
chain. It is worth noting, however, that cross-chain messaging projects such as
LayerZero already support functionality for executing transactions from an ERC-
6551 token-bound account in a cross-chain fashion. This means that namespace
entries may operate as wallets across supported chains.

7.8 Review

A quick review of kimap’s architecture:

1. All keys are strings containing exclusively characters 0–9, a–z (lowercase),
- (hyphen).



Kinode: A General-Purpose Sovereign Cloud Computer 33

2. A key (also called an entry) may be one of two types, a name-key or a
data-key.

3. Every name-key is an ERC-721 NFT with an ERC-6551 token-bound ac-
count.
(a) Name-keys may create sub-entries directly beneath themselves
(b) Name-keys may inscribe data in data-keys directly beneath themselves.

4. A data-key is controlled by its parent name-key and points to bytes stored
in contract memory.

5. Data-keys are either “notes” (mutable) or “facts” (immutable).
6. An owner of a name-key can apply rules to the path structure beneath that

key.
7. Various protocols will run on top of kimap by inspecting specific name–keys

and their data entries, and parsing those entries in various ways.
8. The top level keys are called Top-Level Zones or TLZs.

(a) TLZ minting will be governed in a decentralized manner.
(b) Once created, a TLZ may define custom rules for its sub-entries.
(c) TLZs will produce the tapestry of namespace governance schemes that

allow kimap to be used for a wide variety of protocols.

All that remains for a full understanding of kimap’s utility is the role of the
KINO token, which operates in lockstep with the kimap namespace.

8 KINO Token

KINO is a utility token designed to fill two roles in the Kinode network: assign-
ment of relative value in the global namespace and namespace/protocol gover-
nance.

8.1 Registration

A token holder may choose to register KINO with an entry in kimap. To register
KINO, a token holder submits a transaction to the kimap registration contract
specifying the amount of KINO to register, the duration of the registration, and
the target entry.

The duration of a registration is specified in blocks and will have a minimum
value of around 7 days.

Data keys (prefixed with ~/!) cannot be a target for registration. Any other
entry is a valid target, from top-level entries to arbitrarily deeply nested en-
tries. The target entry does not need to be owned by the address performing
registration.

Registration of KINO is performed in order to produce a value-weighted
onchain directory of nodes, apps, and other content. Every protocol built on
kimap can automatically benefit from the registration of KINO to keys to create
a listing data structure that can be sorted, filtered, and act as a market for user
attention.



34 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

Note that multiple addresses can register tokens to the same kimap entry
at any given time. The amount of KINO registered to an entry is the sum
of all active registrations. Registered tokens are locked for the duration of the
registration and automatically returned to the registering address at the end of
this period.

8.2 Discussion

As described in Section 2, kimap addresses the discoverability problem in peer-
to-peer programming by allowing participants to claim paths and post data
to a global hierarchical namespace. However, this mass of bytes is near-useless
without a weighting mechanism that can be used programmatically or manually
to evaluate content for relative value.

Consider the operation of a web search engine. First, content is crawled
and indexed. In the indexing process, semantic and relative value is assigned
to a given piece of content. These weights are then used during a given search
to provide a ranked set of content objects that best match the search query.
Kimap combined with KINO is not itself a search engine, but it does provide
the substrate to operate such mechanisms in a decentralized way. The entries in
the map are content and registered KINO is a weight-primitive that applies a
topology to that content.

This substrate offers a significant improvement over its centralized counter-
part in that incentives are aligned between users and providers. A “provider” can
be considered any party that places entries in the global namespace. Providers
near-universally seek to optimize for visibility in a zero-sum competition with
other providers. A “user” can be considered any “set of eyes” on the namespace
(not necessarily human eyes), which providers compete over. Historically, both
providers within and the operator of a centralized directory object have been
incentivized to abuse the attention of users. Additionally, operators have been
incentivized to unfairly extract from providers, devising schemes such as placing
a competitor’s entries above a provider unless a special fee is paid. Providers
abuse attention in a similar manner by bribing operators to weight their content
higher in areas where it’s not actually relevant to the user.

These inefficiencies appear unavoidable in the modern web. The kimap ar-
chitecture combined with a single weighting mechanism publicly shared between
users and providers presents an alternative in which all parties are forced to
compete fairly. Users, too, are empowered to reward entries in the global names-
pace. Because any address can register on any namespace entry, the ability of a
single provider to spend tokens on their irrelevant or otherwise spam-like entry
is generally washed out by the broader ability of users to reward valued content
by attaching to it.

Meanwhile, the “operator” role is neutralized. Kinode’s constrained gover-
nance mechanism is responsible for maintaining the namespace but has no con-
trol over the operation of a namespace entry held by another party or the reg-
istration operation. The protocol is naturally incentivized not to interfere with
the utility of KINO as a weighting mechanism: any “thumb on the scale” would



Kinode: A General-Purpose Sovereign Cloud Computer 35

be visible onchain and immediately impact the value of the neutral weighting
mechanism that is KINO.

The kimap+KINO substrate does not include a built-in algorithm to execute
“search” or any other ranking strategy on its weights and values. There is no
single algorithm that will apply to the entire kimap. Algorithms will instead be
written for specific protocols running on kimap. These will have access to KINO
“weights” as one tool in determining quality rankings, and many will also take
into account other factors. At the time of this writing, it is impossible to predict
the specifics of algorithms that will enter popular use for evaluating protocols
on kimap.

One may note that the onchain primitives described in this paper are re-
markably simple. Registering tokens does not require any game theory or MEV
protection properties. Creating and mutating namespace entries is also not sub-
ject to adversarial conditions, since the ability to do so is only granted to an
entry’s owner.27 As a result, we have very little to discuss regarding protocol
risk, assuming the protocol is implemented properly28.

It is possible for algorithms operating on kimap to use other weight sys-
tems, even including a registration system deployed by someone else that uses
an entirely different token. Kimap algorithms will undoubtedly, in many cases,
take factors other than just the amount of KINO registered into account when
ranking and filtering entries. If users, providers, and the operator (the Kinode
protocol) are all incentivized via protocol ownership, KINO will remain an ex-
tremely powerful Schelling point for its intended purpose. Protocols such as KNS
and the package manager already integrate with KINO and future development
of protocols at the OS and core distribution level will use KINO.

What inspires locking tokens to a namespace entry?
Registration of tokens offers utility to the owner of the attached namespace by

enhancing their property’s ranking in various algorithms running on the names-
pace. For this reason, owners of a namespace entry will be naturally incentivized
to register their tokens on their own namespace. This will manifest itself differ-
ently across different protocols running on kimap. In the Kinode Name System,
tokens attached to a node identity enable spam-prevention algorithms, preferen-
tial routing algorithms, and many others that may be built in userspace or even
27 That does not mean the same is true for contracts that utilize the protocol. Kimap

and KINO are designed to be modular—as described at length elsewhere in this
paper, much of the utility of the protocol will come from contracts deployed “on
top” to manage a given namespace and other such things. These contracts must be
designed carefully to avoid failure modes common to onchain protocols. For example,
if one deploys a contract to manage a top-level namespace that wishes to allow for
anyone to register a new sub-entry as their node ID, and exposes a function to claim
any name, it would be trivially easy for someone else to front-run that transaction
and “steal” the name. A simple solution is to have the user commit to a hash of their
desired name as in ENS name minting.

28 Audits pending at the time of this writing.

https://docs.ens.domains/registry/eth#commit-reveal


36 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

directly into the OS. The mere social incentive to connect value to an identity
will likely inspire registration. We expect this dynamic to play out not just for
KNS entries, but also for a number of other social or social-adjacent protocols
that naturally fit into the kimap architecture.

8.3 Current and Future Uses

KINO is currently used by both KNS and the Kinode package manager protocol
to address spam, provide a ranking/sorting system, and assign status to nodes
and apps in a global context.

One interesting option available to protocols on kimap not demonstrated by
the protocols in this paper is the ability to discriminate between top-level zones.
It is not required that a protocol apply itself to the entire kimap. Instead, a
protocol may define itself as only being valid within a single top-level domain,
a subset of top-level zones, or even a subset of entries at some arbitrary level of
nesting. This may prove to be an ideal way to run protocols in a future where
kimap is very large and indexing the entire map is more difficult than indexing
a subset of it.

9 Kinode Governance

In Fig. 1, Kinode is presented as an inverted triangle with kimap+KINO and
Kinode OS above Kinode Governance. Seated at the base of the protocol, Kin-
ode’s governance mechanism is responsible for:

1. Initially distributing the kimap namespace and stewarding it towards full
permissionlessness via ossification at the TLZ level.

2. Incentivizing use of the namespace until it becomes self-perpetuating.
3. Voting on proposals to improve Kinode OS in a backwards-compatible way

over time, while ensuring that adoption of the offchain software remains
aligned with growth of the onchain protocol.

9.1 Voting

To achieve decentralized governance, the onchain namespace and KINO weight-
ing protocol generate voting power as a side effect of token registration. The
address performing registration selects which address receives this voting power,
allowing for delegation schemes.

As noted in Section 8.1, registration of KINO occurs for a set time period.
The lock duration produces a decay curve that determines the voting power
created from registration.

The voting strength of a given address is therefore calculated by iterating
across all the registration actions that address has been indicated as receiving
voting power for, dividing the number of tokens using the decay curve applied
to that registration, then summing the total. Since this is a computationally



Kinode: A General-Purpose Sovereign Cloud Computer 37

intensive operation, the voting power is calculated offchain and bundled into a
zero-knowledge proof submitted to the governance contract. Votes may be shared
peer-to-peer and bundled into proofs submitted in bulk.

Governance is not an empty role in Kinode—unlike purely onchain protocols,
which often fail to benefit from active governance, Kinode governance includes
ongoing responsibilities over the namespace and protocol.

Decentralized finance protocols generally benefit from maximal immutabil-
ity: once a stable and useful primitive exists, its value only tends to decay with
changes. For this reason, “governance” as applied to purely onchain protocols has
historically been somewhat weak. There is no governance necessary if a protocol
is truly immutable and permissionless. Kinode is not a purely onchain pro-
tocol, however, and its governance must be executed in a decentralized manner
for the network to be stable, neutral, and permissionless.

While the governance protocol will be strongly incentivized by builders to
remain permanently backwards-compatible (meaning that protocols launched
on Kinode will never be forced to apply an upgrade), additive non-breaking
aspects can be integrated into the protocol to keep pace with the fast-moving
world of software.

9.2 TLZ Management

The most important role of the governance mechanism is to steward the kimap
namespace until it can stand on its own.29

At some point, ownership of the kimap namespace, and in particular the
top-level entries, will be distributed enough that no single entity could disrupt
the operation of the network as a whole by abusing ownership rights. Since each
top-level namespace entry can be the root of an entire namespace, the theoretical
security requirements for continued operation of the network are 1 of N good
actors. In practice, though, there should be many hundreds of TLZ owners.
Reasonable behavior by owners will be modulated by two things:

1. The ability of sub-entry owners to move to other areas of the namespace.
2. A strong natural preference by users to use sub-entries controlled by im-

mutable smart contracts.

Therefore, once enough top-level namespace entries are held by a diversity of
immutable smart contracts, and possibly mutable contracts controlled by DAOs,
the Kinode governance mechanism will have succeeded in the first phase of its
role. From that point on, core developers will continue to contribute to the
development of all open-source components of the software.
29 Note that each TLZ can create its own form of governance, and we hope to see a

diversity of approaches. The Kinode governance mechanism does not dictate how
any portion of the namespace operates.



38 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

TLZ Auctions Initial namespace distribution will take the form of auctions,
in which the governance mechanism executes a proposal to mint a single TLZ or
bundle of TLZs and send them to an onchain auction contract, where the winner
takes ownership. Auctions can take many forms, such as English or Dutch, and
many smart contract implementations of various auction types exist.30 TLZ
auctions may sell ownership of a namespace entry or merely rent it by either
transferring the NFT to the winner or approving the winner to use a smart
contract, which owns the actual TLZ NFT, for a given period of time.

By auctioning off and otherwise selling namespace, particularly top-level
namespace, the governance mechanism may generate revenue. Revenue earned
this way may be directed anywhere, depending on the auction implementation
approved in a new TLZ proposal, perhaps as further reward for governance par-
ticipation or initiatives to further increase the utility of the namespace.

9.3 Progressive Decentralization

Through 3 phases, Kinode governance will transition from a small team of core
developers to a fully decentralized protocol.

In phase 1, a small set of TLZs will be selected for creation. These will be
minted directly to contracts, including those already in use in the beta system
such as os, dev, and kino, those associated with an existing onchain identity
primitive such as eth, and anything else useful.

During phase 1, more TLZs may be created and distributed. The KINO
registration mechanism will be activated during this time.

In phase 2, voting is enabled, but proposal creation is permissioned. In order
to achieve distributed ownership of the namespace, the first proposal will be to
approve a list of TLZs to be auctioned off. Auctions will seed a treasury controlled
in a trusted role during phase 1 and later delegated to an adminstrator or possibly
burned, depending on governance decisions. The exact format of the auction is
to-be-determined: it will be onchain with permissionless participation. Auctions
during phase 2 will direct proceeds to a treasury funding core development.31

Phase 2 will last until the auctions have completed and the operating system
is at a point in its development where future changes can be approved or denied
via Improvement Proposals approved by voters. This means the operating system
must be fully specified such that it can be altered by Proposals and confirmed
by Specification votes. Development of the OS to the point of specification may
take anywhere from 6 months to one year from the current Beta implementation.
30 https://a16zcrypto.com/posts/article/how-auction-theory-informs-

implementations/
31 The auction contract used in phase 2 will sell ownership of a TLZ: the winner will

have the asset transferred to their address. Phase 3 allows voters to approve any
kind of auction contract, which may include styles of auction that do not transfer
ownership, but rather implement some kind of rent mechanism. TLZs can also im-
plement rent mechanisms of all sorts within their namespace, which is one of the
many modes of TLZ governance we hope to see.

https://a16zcrypto.com/posts/article/how-auction-theory-informs-implementations/
https://a16zcrypto.com/posts/article/how-auction-theory-informs-implementations/


Kinode: A General-Purpose Sovereign Cloud Computer 39

Phase 3 begins the fully decentralized operation of the protocol. Proposals
are activated, which combined with voting completes the governance mechanism.
Auctions in phase 3, rather than directing proceeds to a treasury, will direct
KINO tokens to a burn address. Auction participants will compete to burn the
largest amount of tokens to win the auction. In a similar sense that EIP-1559
directs gas fees to a burn rather than funding a treasury, auctions burning tokens
allow the protocol to maintain neutrality.32

The vote-proposal system includes a precise set of actions:

– Approve/Deny new TLZ + auction contract to be used for auction33

– Approve/Deny new Kinode Improvement Proposal (KIP)
– Approve/Deny new Kinode Specification

Proposals will be shared peer-to-peer in the Kinode network using a proto-
col to-be-determined, which will involve a mechanism to filter for meaningful
proposals (itself using kimap and KINO for this purpose, naturally).

Since Kinode Improvement Proposals (KIPs) affect (only) offchain software,
they only exist to alter the agreed-upon specification of the operating system,
which is written, hashed, and posted onchain. A successful KIP will result in a
Specification vote. At the point of a successful specification change, all Kinode
users are expected to run an implementation of the operating system that com-
ports to the new specification. This will act as an effective schelling point for the
network.

9.4 Default-distro App: Governance Portal

The reference distribution of Kinode OS will include a Governance Portal app,
alongside the App Store and other utilites. The Governance Portal will serve as
a central point where a node identity can create, vote on, and review proposals.
As mentioned in Section 9.1, the voting power of a given address is calculated
offchain and bundled into a zero-knowledge proof submitted to the governance
contract. Functionality for this will be included in the Governance Portal along
with a peer-to-peer protocol for sharing signed votes and bundling them into
proofs.

Auctions and other onchain activities may also be accessible through the
Governance Portal.

9.5 Other Duties

The governance protocol may perform other work to increase the utility of the
namespace and improve the functionality of the operating system, such as de-
veloping more kimap protocols like KNS and the package manager. It may also
take actions to incentivize use of kimap and KINO together.
32 https://eips.ethereum.org/EIPS/eip-1559
33 Note that the specific implementation of auction can be determined by voters, which

decides the auction style.

https://eips.ethereum.org/EIPS/eip-1559


40 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

One significant possibility for the onchain namespace protocol involves scaling
and expansion. The initial deployment will take place on a single blockchain, but
both volume of transactions and support for composition with other onchain
protocols may inspire expansion to multiple other chains. Horizontal scaling of
this kind is achievable by minting a namespace entry (possibly a new TLZ) that
points to a smart contract on another blockchain. The indicated deployment of
kimap would use that namespace entry as its “root node” (which is simply 0x0
on the primary deployment). Such decisions will be made by the governance
protocol, which will be the owner of the root node.

With the ability to propose and ratify Kinode Improvement Proposals, gover-
nance of Kinode also has the ability to create community schelling points around
standards in software and data. The emergent behavior of Kinode users will de-
termine how this ability is used, but since each instance of the operating system
is keyed to the decisions of the governance mechanism, one may expect that the
standards around community discussion, including where it takes place, could
one day be determined by the protocol itself. In traditional centralized software,
network effects and switching costs make communities fragile to platform risk or
the obsolescence of a key protocol. Kinode’s governance mechanism may be the
solution to this fragility, allowing the Kinode community at large to coordinate
at a meta-level beyond individual apps and protocols.



Kinode: A General-Purpose Sovereign Cloud Computer 41

10 A Kinode Future

In a Kinode future, the web as we know it today is replaced by a tapestry
of permissionless protocols that combine the sovereignty of peer-to-peer with
the power of industrial-scale computing. Via runtime extensions and controlled
namespaces, today’s first-party platforms will transform into modularized proto-
cols where users tap into centrally-operated services à la carte. A new generation
of protocols will be built peer-to-peer-first, allowing anyone to act as a provider of
powerful services like AI image, text, and video producers or high-speed anony-
mous networking.

These protocols will not be developed by massive teams or require brigades of
dev-ops workers to stay online. A small group of programmers will specify their
design, create an implementation, and publish it onchain. They may choose to
enable future upgrades by decentralizing the governance of their specification
with a DAO and token, or simply allow its permissionless use forever in a final
state. Switching between protocols will be a trivially easy process for users.
The monopoly of ossified web protocols will be obliterated by Kinode’s user-
node architecture, which allows for the operation of “transformer” protocols that
enable vampire-attacks on any existing protocol with no technical know-how on
the side of the user. Nodes can run anywhere: by a user in their home, in a data
center, or on a mobile device. Nodes will execute the Kinode OS specification, but
be virtualized by a diversity of runtimes optimized for different environments.

Mainstream technology will continue to evolve rapidly at both the hardware
and software level. New programming languages and new chips will emerge that
continue to improve on performance and security. Kinode is a beneficiary of this
innovation, and at the same time, it unleashes the potential of new computing
capabilities while maintaining the sovereignty of the end user.



42 Benjamin McCormick, Nicholas B Ludwig, Markus Vaas, and James Foley

11 Appendix: 3 Ways to Use Kinode

Kinode enables “sovereign computing” by allowing anyone to run their own node
and communicate directly peer-to-peer using protocols deployed on the network.
However, making this sufficiently approachable for non-technical users has been
a historically insurmountable challenge for countless instances of similarly decen-
tralized software. We address this issue by supporting three user-level entrypoints
into the Kinode network:

1. Hosted Nodes
2. Desktop App
3. Self-Hosted Nodes

These are presented in order of complexity for the end user, from least techni-
cal to most. We expect that most users will operate hosted nodes while developers
and power users will self-host nodes. The desktop GUI version of Kinode will
allow anyone with a computer to run a node for free, but have fundamental lim-
itations regarding remote access (such as through a mobile app) and consistent
uptime, which will likely be important for some protocols.

These options are presented today, but as Kinode matures, routes that require
more technical investment will open up. This includes running Kinode OS on a
mobile device or distributing a version of Kinode bundled as a Linux distribution
for bare-metal servers.

1. Hosted Nodes: The absolute easiest way to join the Kinode network is
to access a node hosted by a professional service. We have already developed
a framework for running such a service and intend to open-source the platform
while partnering with ecosystem participants to offer a managed service. A user
may access a hosted node via a web browser or a mobile app. Hosts may offer
various forms of authentication and payment in exchange for access to the node.

While allowing a host to manage one’s node sacrifices some degree of total
ownership over one’s identity and data, this strategy still offers critical advan-
tages over centralized web services.

Firstly, the user only needs to trust a single entity—the host—rather than a
separate entity for each service they use.

Secondly, node hosts are always engaged in a game-theoretic competition
with other hosts with users as the benefactors. If a host abuses their power, it is
a trivial matter for users to move to another host, because each host offers the
same fundamental functionality, defined by the Kinode OS specification. Even
offering the ability to import and export an existing node is a feature enforced
by this competition, in the sense that users will undoubtedly choose a host that
offers this ability over one that does not. Game theory also ensures that hosts
will be forced to compete on cost, driving the price of hosting to the minimum
premium over raw compute resources.

In fact, historical precedent indicates that hosting for such a service will
almost certainly be free. Why? Developers of various value-accretive protocols



Kinode: A General-Purpose Sovereign Cloud Computer 43

will offer hosting as a loss-leader to attract users. In Kinode’s case, hosts can
easily offer a node with their software pre-installed, while users can onboard for
free and later migrate their identity to a new host or a fully self-hosted setup.

2. Desktop App: As a second entrypoint into the Kinode network, we maintain
a desktop application for easy install and execution like that of a regular pro-
gram. All that it does is run a node and serve its web frontend as a standalone
application. This is a simple way for users to run a node on their computer
without needing to interact with the command line.

The ability to package Kinode as a traditional app was a design goal from the
beginning of the project and inspired features such as indirect nodes described
in Section 3.1. Users do not need to perform any advanced system configuration
to robustly run a node from their laptop or desktop computer.

Nodes run in this fashion will inherently lack support for remote access and
regular uptime. Since using Kinode-powered mobile apps will be a core user
experience, most long-term users will be driven to either find a hosting solution
or self-host. The same holds true for running protocols that require a node
to regularly perform actions or receive messages on the network: the uptime
characteristics of a desktop app are not appropriate for such tasks. However, the
desktop app will be ideal for testing out Kinode as a casual user.

3. Self-Host a Node: Running a node on a home server or VPS instance offers
the most control over one’s identity and data. It is also a somewhat technical
process that involves navigating a command line interface and performing sys-
tem administration tasks like installing a web server, managing a firewall, and
configuring DNS. Only a small fraction of users will ever choose to self-host, but
for developers and power users (who, for example, may want to provide services
like RPC access or compute resources to other nodes) it will always be the best
option. Self-hosting Kinode is similar in complexity to operating a full node for
a blockchain and has the same uptime considerations. However, the Kinode net-
work does not have a network-wide consensus mechanism, so the importance of
distributing nodes across many different entities is significantly reduced. It is safe
to have the vast majority of nodes distributed across a few hosting providers,
with a relatively small number of self-hosted nodes. Self-hosting in the CLI
and desktop app form will always be available as a fallback to maintain user
sovereignty.


	Kinode: A General-Purpose Sovereign Cloud Computer
	Overview
	Kimap
	Example Kimap Entries

	KNS: Kinode Name System
	Specification
	Indexing
	Adding Other Onchain Identity Primitives

	Kinode OS
	WIT
	Microkernel
	Message Passing
	Capabilities-Based Security
	System Primitives
	Example Process
	Selected Runtime Modules
	Runtime Extensions
	Backwards Compatibility

	Package Manager
	Specification
	Package Metadata
	Package Manifest
	Default-distro App: App Store

	Kit
	Kimap Advanced
	Top-Level Zones
	Name Keys
	Data Keys
	Extensibility
	Counterfactual Addresses For Kinode Smart Accounts
	ERC-6551 Token-Bound Accounts
	Scaling
	Review

	KINO Token
	Registration
	Discussion
	Current and Future Uses

	Kinode Governance
	Voting
	TLZ Management
	Progressive Decentralization
	Default-distro App: Governance Portal
	Other Duties

	A Kinode Future
	Appendix: 3 Ways to Use Kinode


